Optimal evaluation of a Toader-type mean by power mean

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Evaluations for the Sándor–yang Mean by Power Mean

In this paper, we present the best possible upper and lower bounds for the Sándor-Yang mean in terms of the power mean. Mathematics subject classification (2010): 26E60.

متن کامل

Sharp Generalized Seiffert Mean Bounds for Toader Mean

and Applied Analysis 3 2. Lemmas In order to establish ourmain result, we need several formulas and lemmas, whichwe present in this section. The following formulas were presented in 10, Appendix E, pages 474-475 : Let r ∈ 0, 1 , then

متن کامل

Lévy–khintchine Representation of Toader–qi Mean

In the paper, by virtue of a Lévy–Khintchine representation and an alternative integral representation for the weighted geometric mean, the authors establish a Lévy–Khintchine representation and an alternative integral representation for the Toader–Qi mean. Moreover, the authors also collect an probabilistic interpretation and applications in engineering of the Toader– Qi mean. 1. Preliminaries...

متن کامل

Optimal convex combination bounds of geometric and Neuman means for Toader-type mean

In this paper, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] with [Formula: see text] if and only if [Formula: see text], [Formula: see text] , [Formula: see text] and [Formula: see text] , where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] are the Toader, geometric, arithmetic and two Neu...

متن کامل

Bounds for Combinations of Toader Mean and Arithmetic Mean in Terms of Centroidal Mean

The authors find the greatest value λ and the least value μ, such that the double inequality C(λa + (1-λb), λb+(1-λ)a) < αA(a, b) + (1-α)T(a,b) < C(μa + (1 - μ)b, μb + (1 - μ)a) holds for all α ∈ (0, 1) and a, b > 0 with a ≠ b, where C(a, b) = 2(a² + ab + b²)/3(a + b), A(a, b) = (a + b)/2, and T(a, b) = (a + b)/2, and T(a, b) = (2/π) ∫₀(π/2) √a²cos²θ + b²sin²θdθ denote, respectively, the centro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2015

ISSN: 1029-242X

DOI: 10.1186/s13660-015-0927-6